identification topology - Definition. Was ist identification topology
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist identification topology - definition

TOPOLOGICAL SPACE CONSISTING OF EQUIVALENCE CLASSES OF POINTS IN ANOTHER TOPOLOGICAL SPACE
Quotient topology; Quotient (topology); Quotient map; Identification space; Identification map; Quotient topological space; Gluing (topology); Identifiation map; Hereditarily quotient map
  • For example, <math>[0,1]/\{0,1\}</math> is homeomorphic to the circle <math>S^1.</math>
  • frameless

Trivial topology         
TOPOLOGY WHERE THE ONLY OPEN SETS ARE THE EMPTY SET AND THE ENTIRE SPACE
Indiscrete topology; Indiscrete space; Codiscrete topology
In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, concrete or codiscrete.
Computational topology         
SUBFIELD OF TOPOLOGY WITH AN OVERLAP WITH AREAS OF COMPUTER SCIENCE
Algorithmic topology
Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular, computational geometry and computational complexity theory.
Étale topology         
GROTHENDIECK TOPOLOGY ON THE CATEGORY OF SCHEMES, WHOSE COVERING FAMILIES ARE JOINTLY SURJECTIVE FAMILIES OF ÉTALE MORPHISMS
Etale topology; Étale sheaf
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.

Wikipedia

Quotient space (topology)

In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space.

Intuitively speaking, the points of each equivalence class are identified or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space.